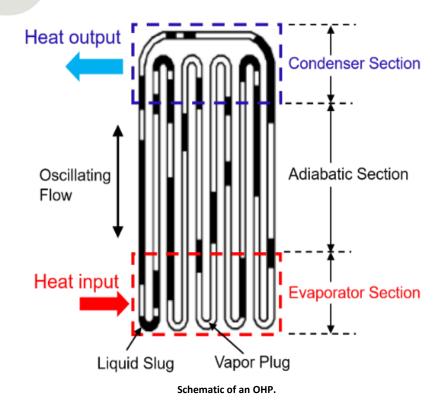

## Research Thrust-1: Additively Manufactured Systems for Space Applications

Sub-project 2: Investigating Thermo-Fluid Mechanism in Oscillating Heat Pipes




## Statement of R&D Problem

An Oscillating Heat Pipe (OHP) is a passive and wickless device that has been identified as a potential TCS to overcome the limitations of conventional heat pipes. For an OHP (Fig. 3), start-up is primarily accomplished through nucleate boiling heat transfer within the evaporator. However, the OHP's design parameters, e.g., tube size, tube length, number of turns, etc., impact pressure drops ( $\Delta$ P) in OHP's mini-channels. An increased  $\Delta$ P is undesirable since the two-phase fluid oscillations can lose momentum due to frictional loses and this can expedite dry-out.



## Statement of R&D Problem

An Oscillating Heat Pipe (OHP) is a passive and wickless device that has been identified as a potential TCS to overcome the limitations of conventional heat pipes. For an OHP (Fig. 3), start-up is primarily accomplished through nucleate boiling heat transfer within the evaporator. However, the OHP's design parameters, e.g., tube size, tube length, number of turns, etc., impact pressure drops ( $\Delta$ P) in OHP's mini-channels. An increased  $\Delta$ P is undesirable since the two-phase fluid oscillations can lose momentum due to frictional loses and this can expedite dry-out.

