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Machine Learning and Deep Learning (ML&DL) are areas of active research
with multiple expert-level performing algorithms, yet additional research is
needed to reach this level of accuracy on highly imbalanced, non-linear
datasets. This is evident in the presence of environment data, such as
remotely-sensed hyperspectral images and time series data that describe
streamflow and surface-water quantity. In this study, we propose different
approaches, as follows: (1) The implementation of context-based feature
augmentation (CFA) to tackle highly imbalanced data in hyperspectral
classification using deep convolutional neuronets; (2) The implementation of
Scharr-based adaptive filtering (SAF) to deal with non-linearities in time
series prediction using deep recurrent neuronets; and finally, (3) The
application of CFA and SAF to improve performance accuracy in
hyperspectral classification and time series prediction using real-world
environment datasets.

This research work proposes CFA-assisted hybrid approach for hyperspectral classification and a SAF-
assisted hybrid approach for streamflow prediction. The experimental results demonstrate that the
proposed CFA-assisted hybrid approach can effectively improve the overall classification accuracy for
real-world data, and the proposed SAF-assisted hybrid approach also obtained competitive and even
better performance compared with several state-of-the-art methods. In addition, our proposed
design achieves comparable performance in terms of prediction time. The future work may include
applying the proposed hybrid approaches into other environmental datasets, such as wind
prediction.
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With Conv-based and LSTM-based approaches at expert-level performance,
researchers have found great success across a range of applications, such as
autonomous driving/piloting, healthcare, cybersecurity, speech and image
recognition, natural language processing and financial markets. However,
these DL approaches are data-depended. Since they use labeled data to learn
patterns during the fitting phase and later apply this knowledge during on
unlabeled data the predict phase, the level of quantity and quality of the input
data greatly impacts the learning ability and performance. Data Quantity
refers to the number of labeled data samples. Recently, there has been an
exponential growth in data capturing in every possible area of life. All sectors
are gathering, collecting, warehousing massive datasets from research
institutions to government agencies to private corporations. Academia,
industry and governments are creating new sources (Internet of Things) with
greater detail (Browsing History) and finer granularity. Data Quality refers to
how well the data samples model the entire dataset. In the presence of
environmental data, that is data collected with sensors that measure any
environmental variable, deep learning algorithms leverage from these oceans
of data and hybrid models to address emerging challenges in highly
imbalanced data samples and non-linearity of the systems. In hyperspectral
datasets, classification algorithms need to also address the curse of
dimensionality, high levels of imbalanced data distribution, and the presence
of noise while in time series datasets, such as streamflow, prediction
algorithms need to deal with the non-linearity of the systems.
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Fig 1:   Deep Learning Models: a) MLP, b) CNN and c) LSTM neurons

Evaluation Methods

Fig 3. Confusion Matrix

Fig 4. Classification Report

Experimental Results
.Dataset #1: The first dataset was collected by the ROSIS optical sensor over an urban area centered

at the University of Pavia, Italy. The flight was operated by the Deutschen Zentrum for Luftund
Raumfahrt (DLR, the German Aerospace Agency) in the framework of the HySens project, managed
and sponsored by the European Union. In Figure 6, the collected cube size in pixels is 610 × 340 by
115 channels.
Dataset #2: The second, real-world dataset consists of monthly adjusted river streamflow in cubic
feet per second (cfs) collected at the Potomac Basin above Little Falls, which is near Washington DC,
USA. Figure 7 shows the raw streamflow values, from March 1930 to December 2021. These
adjusted values were collected by the National Water Information System (NWIS) at the U.S.
Geological Survey, Station No. 01646502.

 

Fig 5. Data Partitions for K-fold Cross Validation, where the Test set consists of ⅕ of the
data (blue squares), the Validation set also consists of ⅕ of the data (orange squares)
and the Training set consists of the remaining ⅗ of the data (white squares). And, in
every run, different partitions are used for training, validation and testing.

Fig 2:   Overview of the proposed hybrid DL-based frameworks for: 
Hyperspectral Classification on the left and Streamflow Prediction on the right

In all the experiments, the proposed CNN-variants and LSTM-variants use the
Adam optimizer and a learning rate of 0.00001 for 200 epochs. The test
bench for all performance experiments was implemented using Python 3.7.
The runtime environment consists of a 2-core CPU, Intel(R) Xeon(R) @
2.20GHz, a single GPU, Tesla K80, 4992 CUDA, 12GB GDDR5, 13GB of RAM
and 80GB of HDD on a Linux-based virtual machine.

Table 1: Hyperspectral Classification Accuracy

Fig. 8 Confusion Matrices for MLP, CNN and LSTM Fig. 9 Predicted vs Actual and Absolute Error

Table 2: Time Series Prediction Accuracy

Fig. 6 Hyperspectral Cube Collection Fig. 7 Streamflow Time Series Collection

Eq. 3: Complex Scharr operator, where Gx and Gy represent the horizontal and vertical
gradients, respectively, and Amp is a scalar factor.

Eq. 4: Root Mean Square Error, where N
represents the total number of i-th testing
samples, yi corresponds to the actual
observations and ŷi the predicted values.

Eq. 2: Signal-to-Noise Ratio, where µprecip corresponds to mean value of all streamflow
data points and σnoise corresponds to the noise variance.

Eq. 1: Additive Gaussian White Noise, where r is a uniformly random-generated number
between [0,1], µ corresponds to expected value zero and σ corresponds to the noise
variance.

Results: Figure 8 and Table 1 summarize our remote sensing classification results published in [1],
whereas Figure 9 and Table 2 summarize our streamflow quantity prediction results published in [2].
The ideal confusion matrix will only have nonzero values on the main diagonal. The ideal Predicted
vs Actual plot will overlap perfectly generating an Absolute Error plot equal to the constant zero (a
horizontal line). The perfect accuracy will have a value of 100.0 ± 0.0.
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